# 6<sup>th</sup> grade Math Success Plans - Maintenance

**Date of Delivery**: 11/7 - 11/18

Title of Activity: LCM, GCF, Adding and Subtracting Fractions and Mixed Numbers

**Primary Learning Objective(s)**: I can add and subtract unlike fractions. I can add and subtract mixed numbers.

**Materials**: GCF and LCM PowerPoint, Dry Erase Materials, Pencil, Paper, Fraction Target Game sheets, Playing cards (face cards removed) for each group or set of partners, Fraction word problem worksheet

## Weekly Schedule/Procedures:

**Monday**: Greatest Common Factor (GCF) and Least Common Multiple (LCM)

Use the Power Point to review GCF, LCM and the cake layer method. After you have gone over the slides as a group give students the following problems to do on their own or with a partner on a dry erase board or paper. The problems are on the last slide of the power point if you would like to display them.

# Finding GCF – Greatest Common Factor

Make sure students understand what a factor is. The definition of a factor is "Numbers we can multiply together to get another number." There can be more than one common factor, the GCF is the greatest of the common factors.

Examples:  $\sim$ 3 and 4 are factors of 12 because 3\*4=12

 $\sim$ 5 and 6 are factors of 30 because 5\*6= 30

 $\sim$ 2 and 3 are factors of 6 because 2\*3=6

~5 is not a factor of 12 because

Have students solve the following on paper or a white board:

- 1. Find the GCF of 60 and 36
- 2. Find the GCF of 108 and 72
- 3. Find the GCF of 36, 42, 54

GCF of 60 and 36:

GCF of 108 and 72

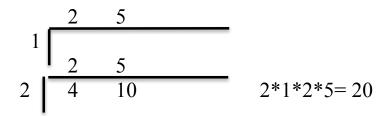
GCF of 36, 42, and 54:

# Finding LCM - Least Common Multiple

Make sure students know what a multiple is. The definition of multiple is The result of multiplying a number by an integer"

Examples:

- -15 is a multiple of 3 because  $3 \times 5 = 15$
- -14 is a multiple of 7 because  $7 \times 2 = 14$
- -6 is not a multiple of 5 because no integer multiplied by 5 will result in 6.


Have students solve the following individually or with partners:

- 1. Find the LCM of 3 and 7
- 2. Find the LCM of 4 and 10
- 3. Find the LCM of 6 and 15

LCM of 3 and 7:

1 3 7 (when 1 is outside the layer, multiply straight across) 
$$1*3*7 = 21$$

The LCM of 4 and 10:



The LCM of 6 and 15:

When using the cake layer method, the LCM is the product of the numbers multiplied together outside the cake layers which form a letter L on its side.

**Tuesday**: Adding and Subtracting Unlike Fractions.

Remind students that in order to add or subtract fractions, the denominator must be the same. Follow these steps:

- 1. Find LCM for the denominator
- 2. Write Equivalent Fractions
- 3. Solve by adding or subtracting the numerators.
- 4. Reduce if necessary

Do the following examples and describe each step of the process:

#### Example 1:

$$\frac{1}{4} + \frac{3}{5}$$

Using LCM, find the common denominator.

1 4 5 
$$LCM = 1*4*5 = 20$$

Write Equivalent Fractions with the LCM as the denominator:

$$5* \frac{1}{4} + 4* \frac{3}{5} = \frac{5}{20} + \frac{12}{20}$$

$$\frac{5+12}{20} = \frac{17}{20}$$
 (Add the numbers in the numerators)

### Example 2:

$$\frac{3}{6} + \frac{6}{11}$$

Use LCM to find the common denominator. LCM is 66

Write equivalent fractions with the LCM as the denominator.

$$\begin{array}{rcl}
11 * \underline{3} & + 6 * \underline{6} & = \underline{33} + \underline{36} \\
11 * \overline{6} & 6 * \overline{11} & \overline{66} & \overline{66}
\end{array}$$

$$\frac{33+36}{66} = \frac{69}{66}$$

Reduce the final answer to the simplest form:

$$\frac{69}{66} = \frac{23}{22}$$
 (Divide the numerator and the denominator by 3)

Remind students they are not finished until the numbers are in the simplest form.

Play the Fraction Target number game.

Wednesday: Panther Success

Thursday: Adding and subtracting mixed numbers.

Share these examples with the students:

When adding or subtracting mixed numbers, address the fractions first then address the whole numbers:

$$3\frac{3}{4}+1\frac{1}{2}$$

$$\frac{3}{4} + \frac{1}{2}$$
 Find the LCM which is 4

Write Equivalent Fractions:

$$\frac{3}{4} + \frac{2}{4} = \frac{5}{4} = 1\frac{1}{4}$$

Now add the whole numbers

$$3+1+1\frac{1}{4}=5\frac{1}{4}$$

Subtraction Example: Address the fractions first then the whole numbers

$$3\frac{3}{4} - 1\frac{1}{2}$$

$$\frac{3}{4} - \frac{1}{2}$$
 Find the LCM which is 4

Write Equivalent Fractions:

$$\frac{3}{4} - \frac{2}{4} = \frac{1}{4}$$

Now subtract the whole numbers

3 - 1 = 2, place the whole number with the fraction, the solution is 
$$2\frac{1}{4}$$

Subtracting mix numbers with borrowing example

$$4\frac{1}{8}$$
 -  $1\frac{1}{2}$ 

Address the fractions first:

$$\frac{1}{8}$$
 -  $\frac{1}{2}$  Find the LCM, it is 8, then write Equivalent Fractions:

$$\frac{1}{8} - \frac{4}{8}$$

Since we can't subtract 4 from 1 in the numerators, we borrow 1 from the whole number 4, making it a 3. When demonstrating this, cross out the 4 on the board, and write a 3. We can write the borrowed 1 as any number over itself, but we choose to write it as  $\frac{8}{8}$  since we are working fractions with 8 in the denominator.

Now we have:

$$\frac{8}{8} + \frac{1}{8} - \frac{4}{8}$$
 which is  $\frac{9}{8} - \frac{4}{8} = \frac{5}{8}$ 

Now address the whole numbers, remembering that 1 was borrowed from the 4 making it a 3. So 3-1=2 and combined with our fraction, the solution is  $2\frac{5}{8}$ 

Have the students play the fraction target using mixed numbers game.

### Friday:

Handout worksheet with fraction word problems: These problems involve multiple steps of adding or subtracting fractions and mixed numbers to solve.

Students can work on these problems individually or with a partner. If they work individually, they should check their process and answers with a partner.